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Abstract—The Rectified Nearest Feature Line Segment (RN-
FLS) classifier is an improved version of the Nearest Feature
Line (NFL) classification rule. RNFLS corrects two drawbacks
of NFL, namely the interpolation and extrapolation inaccu-
racies, by applying two consecutive processes —segmentation
and rectification— to the initial set of feature lines. The main
drawbacks of this technique, occurring in both training and
test phases, are the high computational cost of the rectification
procedure and the exponential explosion of the number of
lines. We propose a cheaper version of RNFLS, based on a
characterization of the points that should form good lines. The
characterization relies on a recent neighborhood-based principle
that categorizes objects into four types: safe, borderline, rare and
outliers, depending on the position of each point with respect to
the other classes. The proposed approach represents a variant of
RNFLS in the sense that it only considers lines between safe
points. This allows a drastic reduction in the computational
burden imposed by RNFLS. We carried out an empirical and
thorough analysis based on different public data sets, showing
that our proposed approach, in general, is not significantly
different from RNFLS, but cheaper since the consideration of
likely irrelevant feature line segments is avoided.

I. INTRODUCTION

The task of automatic classification consists in applying
a function f that assigns a class label θ̂ to a test feature
vector t ∈ RD, where θ̂ ∈ Ω = {ω1, . . . , ωK} in a K-
class problem. The function f : t → θ̂, typically called
the classifier, is learned from a set of labeled training feature
vectors T = {(t1, θ1), . . . , (tN , θN )}, where θk ∈ Ω. Such a
process of learning f from data is known as training, for which
it is typically assumed that elements of T must be normalized
by using a technique such as the well-known z-score standard-
ization [1]. The data normalization, prior to training, aims at
avoiding the influence of differences in the dynamic ranges
of the features and must also be applied to the test feature
vector t. Hereafter we will assume normalized versions of T
and t and denote them as X = {(x1, θ1), . . . , (xN , θN )} and
x, respectively.

A plethora of classifiers has been proposed in the literature
whose decisions are typically based on either posterior proba-
bilities or distances. Among the latter, a commonly used base-
line algorithm is the Nearest Neighbor (1-NN) rule [2], which
assigns to x the class label of its closest (xn, yn) ∈ X . In
spite of the simplicity of 1-NN, its classification performance
is often satisfactory; besides, it provides a straightforward

understanding for non-experts about the motivation of the class
label assignment. The first advantage, however, only holds
when a sufficiently large training set X is provided; moreover,
due to the local character of the 1-NN decisions, this technique
is very sensitive to noise in the data.

Several proposals, aimed at solving the weaknesses of 1-
NN, can be found in the literature; some of them are aimed at
removing either noisy or superfluous data by applying, for
example, condensing and editing methods [3]. Other alter-
natives are aimed at better exploiting the information from
X by building a continuum between either pairs or triplets
of training feature vectors belonging to the same class [4],
[5]. The earliest and most popular representative of the latter
methods is the Nearest Feature Line (NFL) rule [6], in which
continua correspond to lines in the feature space: the so-called
feature lines. NFL labels a test feature vector by assigning it
to the class label associated to its nearest feature line. Even
though NFL was originally proposed for face recognition, it
exhibits a good classification performance in several applica-
tion scenarios but suffers from three drawbacks: extrapolation
inaccuracy because feature lines extend indefinitely beyond
their endpoints in both directions, interpolation inaccuracy due
to potential invasion of the interpolating segment of the feature
lines —typically for multimodal classes— to the territory of
other classes, and high computational cost, due to the quadratic
time complexity induced by the number of generated feature
lines.

The first two above-mentioned drawbacks of NFL —
that tend to occur for complicated distributions and in low-
dimensional feature spaces— have been overcome by a variant
of NFL called the Rectified Nearest Feature Line Segment
(RNFLS) [7], particularly by applying two consecutive pro-
cesses to the feature lines, namely a segmentation followed
by a rectification. Less attention has been paid to the third
drawback (high computational cost), which still remains an
issue for the practical application of the NFL family of
classifiers. In particular, this problem occurs in the testing
phase since all possible lines should be analyzed, and also
in the training phase since the rectification procedure (a rather
high cost procedure) is applied to all possible lines. Some
strategies have been proposed to reduce the computational cost
in the testing case, including selections based on the length of
the lines or supervised criteria [8], [9]. In addition, RNFLS

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 2787



itself also alleviates the cost of NFL during the testing stage,
since the rectification process reduces the cardinality of the set
of feature lines by removing those that cross the territory of
other classes. However, in general, how to reduce the number
of lines to be considered remains an open issue: in this paper
we propose a viable solution to this problem, based on a
characterization of points which should form good lines. In
this way we move the reasoning from the line-level (which is
quadratic in the number of points) to the point level (linear in
the number of points).

In our approach we started from the observation that the
rectification procedure of RNFLS is indeed very useful, since
it generates more concentrated distributions which, thereby,
leads to better classification rates – as shown by the proponents
in their paper [7]. Then we analyzed the characteristics of the
points composing the feature line segments that are preserved
after the rectification, together with the points composing
the lines which are decisive, i.e. the feature lines that, at
the end, are responsible for the class label assignments. We
characterized such points according to a neighborhood-based
principle recently proposed in [10], [11] that categorizes
objects into four types: safe, borderline, rare and outlier
examples, depending on the position of the point with respect
to the other classes. Inspired by a thorough empirical analysis,
which showed that in the RNFLS procedure most of the points
belonging to the relevant lines (i.e. lines which are decisive for
the classification) belong to the safe category, here we propose
the safeRNFLS, a variant of the RNFLS which only considers
lines between safe points. This permits a drastic reduction in
the computational burden needed by RNFLS. We carried out
an empirical and thorough analysis based on different public
data sets, showing that our proposed approach, in general,
is not significantly different from RNFLS, but cheaper since
the consideration of likely irrelevant feature line segments
is avoided. A counterexample is also provided, in order to
illustrate situations in which the proposed approach is not
recommended.

II. NEAREST FEATURE LINE CLASSIFIERS

A. The Nearest Feature Line (NFL) classifier
The NFL classifier [6] was originally proposed for face

recognition and, by extension, for pixel-based problems where
a relatively high-dimensional representation (either the pixels
themselves or a transform of them) is derived. It is defined
by considering all possible pairs of training feature vectors
—belonging to the same class and without repetition— as
endpoints of the interpolating lines that connect the pairs. Such
lines, called feature lines, are used as a subspace to project a
test point onto them. Subsequently, the test point is assigned
with the class label of the nearest subspace. More formally,
let xixj denote a feature line connecting training points xi

and xj from a particular class, that is θi = θj and i 6= j. The
orthogonal projection of a test feature vector x onto xixj is
given by:

p = (1− µ)xi + µxj , µ =
(x− xi) · (xj − xi)

||xj − xi||2
.

Notice that p might end up either on the interpolating or
on the extrapolating part of xixj : the former represents the
segment connecting the two points xi and xj , while the latter
corresponds to the rest of the line. The distance from x to
xixj is then the distance from x to p.

B. The Rectified Nearest Feature Line Segment (RNFLS) clas-
sifier

As mentioned above, NFL is prone to fail due to a two-fold
reason: on the one hand, NFL suffers from the invasion of
feature lines to regions belonging to other classes, this being
very likely to occur in low-dimensional spaces; on the other
hand, NFL is prone to fail because p might be inconveniently
located when the projection of x is on the extrapolating part
of the feature line. RNFLS [7] is also attractive —as NFL— in
small sample size situations but, in order to solve the above-
mentioned drawbacks, it differs from NFL in the following
three aspects:

• Segmentation: Distances from x to p are replaced by
the distance from x to the nearest endpoint when p is
placed on the extrapolating part of the feature line, there-
fore, feature lines are now called feature lines segments,
denoted hereafter as xixj . An illustrative example of
the segmentation process is shown in Figure 1; different
situations are presented for three test feature vectors: xa,
xb and xc, respectively.

p

d(xb, xixj ) = d(xb, xixj )

xi

xj

xb

xa

d(xa, xixj )

xc

d(xc, xixj )

Fig. 1: Illustrative example of the distances from three test
feature vectors to a feature line segment.

• Rectification: The set of feature line segments is exam-
ined in order to remove those that cross regions of other
classes. The criterion of invasion is the following: Let rk
be the largest ball, centered at the training feature vector
xk that only includes other training vectors of the same
class of xk. Then, xixj crosses the territory of xk if
d(xk,xixj) < rk and provided that θi 6= θk. Feature
line segments that are preserved after rectification are
those that do not cross any territory of the training feature
vectors from other classes.

• Degenerate Lines: In contrast with NFL, RNFLS also
allows degenerated feature lines (cases where i = j);
that is, feature line segments that are built with a training
feature vector and itself. In practice, this means that
RNFLS considers not just the distances to the feature
line segments but also the distances to the training feature
vectors, thus including 1-NN as a special case.

2788



III. PROPOSED ANALYSES AND METHOD

Napierala and Stefanowski [12], [10] recently proposed a
typification of examples according to the class labels of their
k nearest neighbors. In particular, they proposed to examine
k = 5 neighbors as an acceptable compromise between a
representative size of the neighborhood and its appropriate
locality when considering four types of examples. Given a
training feature vector xi, let A ∈ {0, . . . , 5} be the number of
neighbors that belong to its same class and let B ∈ {0, . . . , 5}
the number of its neighbors that belong to different classes.
According to the proportion A:B, xi is typified as follows:

• 5:0 or 4:1 ⇒ xi is considered a safe example.
• 3:2 or 2:3 ⇒ xi is considered a borderline example.
• 1:4 ⇒ xi is considered a rare example but only if its

nearest neighbor from the same class has, in turn, an
A:B proportion or either 0:5 or 1:4. Otherwise, xi is
considered a borderline example. This definition, that we
adopt here, is the one given by Saez et al. [11] —referring
to [10]— where a recursive analysis of the case 1:4 is
avoided.

• 0:5 ⇒ xi is considered an outlier.
Figure 2 shows an illustrative case of this typification, as
applied to an artificial problem with two Gaussian-distributed
classes having identity covariance matrices and class means
separated by 1 in the first dimension.

Safe - class 1

Borderline - class 1

Rare - class 1

Outlier - class 1

Safe - class 2

Borderline - class 2

Rare - class 2

Outlier - class 2

Fig. 2: Illustrative case of typification according to the class
labels of the 5 nearest neighbors.

For the sake of simplicity and even though the original
neighborhood criterion is based on the so-called heterogeneous
value difference metric, we preferred to use the conventional
Euclidean distance to judge the proximity between training
feature vectors. As a preliminary experiment, we explore the
application of this typology as an instance selection procedure
for 1-NN, see Sec. IV-B.

Based on the above-described typology, we propose to
characterize feature line segments according to the following
categories corresponding to all the 2-combinations, with rep-
etition allowed:

s2s: Feature line segment from safe point to safe point.
s2b: Feature line segment from safe point to borderline

point, or vice versa.
s2r: Feature line segment from safe point to rare point,

or vice versa.
s2o: Feature line segment from safe point to outlier, or

vice versa.

b2b: Feature line segment from borderline point to bor-
derline point.

b2r: Feature line segment from borderline point to rare
point, or vice versa.

b2o: Feature line segment from borderline point to outlier,
or vice versa.

r2r: Feature line segment from rare point to rare point.
r2o: Feature line segment from rare point to outlier, or

vice versa.
o2o: Feature line segment from outlier to outlier.
Starting from this typology, our idea is that the most

important lines for NFL (and RNFLS) are those connecting
safe points, i.e. only s2s lines. These points are placed well
inside the classes, so it is highly probable that lines connecting
them are not suffering from the problems reported in the
previous section (crossing other classes). Our proposal is very
straightforward, i.e. firstly selecting only safe points and,
afterwards, applying the usual RNFLS procedure. In this sense
our proposed method can be understood as a pre-selection
of potentially decisive feature line segments followed by the
remaining parts of the original RNFLS classifier. The set
of pre-selected feature line segments is further refined by
the rectification process. In spite of its simplicity, it will be
shown in the experimental section that this modified version
of RNFLS —that we call heareafter safeRNFLS— is not
significantly different from its original version that includes
all possible feature line segments. Such a modified version,
however, is drastically cheaper since the consideration of likely
irrelevant feature line segments is avoided in both training and
test phases. The proposed method is schematically depicted in
Fig. 3.

Set of
training
objects

Typification
of objects

Remotion
of non-safe

objects

Pre-selection

safeRNFLS

Rectification
process

Building
feature line
segments

RNFLS

Set of s2s
rectified

feature line
segments

Fig. 3: A block diagram for the training phase of the proposed
safeRNFLS method.

IV. RESULTS AND DISCUSSION

In this section the proposed method is evaluated. In par-
ticular, we first start by analyzing in which categories fall the
most important feature line segments used by RNFLS, in terms
of both lines maintained after the rectification procedure and
lines used for the final classification (i.e. the nearest feature
line segments). This analysis, which justifies our proposal,
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also provides us with the opportunity of better understanding
the local and global effect of the rectification process as well
as knowing the typical nature of the feature line segments
that, at the end, are the responsible ones for the class label
assignments. These analyses are discussed below, followed
by a performance evaluation of the proposed safeRNFLS
classifier in Sec. IV-D. As a preliminary analysis, we reported
the performances of 1-NN when we only select safe points in
the training set, which corresponds to seeing the typification
introduced in the previous section as a condensing strategy.

A. Experimental setup and data sets

All the reported classification accuracies for the experiments
were estimated for a repeated 50%-50% train and test protocol
with 20 repetitions. In order to compare the results and decide
whether differences are significant, we also computed the
corresponding standard errors [13]. It is important, however,
to remember in this comparison that there are no unbiased
estimators for the variance and, thereby, neither for the stan-
dard errors [14]. Mean and standard deviation for the z-score
normalization were computed by using just the training set
and, afterwards, applying the corresponding normalization to
both training and test sets.

For the sake of reproducible research, experiments were
performed for almost the same collection of data sets from the
UCI Machine Learning repository that were originally used by
Du and Chen [7], except that we did not consider Housing data
set because its conversion from a regression to a classification
problem was unclear to us. In addition, taking into account
the well-known “no free luch” theorem [15] which establishes
that there is no a universally good learning algorithm, we
also report classification accuracies with a data set (called
Gastro) for which our proposal does not behave well. This
data set is also publicly available at the UCI repository [16]
and contains 698-dimensional feature vectors extracted from
76 colonoscopy two-channel videos. We only considered data
from the narrow band imaging channel.

Feature vectors having missing values were removed from
the data sets. Basic details of the data sets, along with
their corresponding leave-one-out (LOO) 1-NN accuracies and
composition of types of examples, are given in Table I. It is
worth mentioning that, for WPBC, we did not get the same
LOO 1-NN accuracy that was reported in [7].

Many observations can be derived by looking at Table
I. Firstly, notice that WDBC, Wine and Iris are the most
homogeneous data sets, comprising 90% safe examples. These
data sets therefore correspond to easy problems as can be
verified by their highly accurate LOO 1-NN results which are
superior to 90% accuracies. A bit less homogeneous data set
is Hepatitis, which also accounts for an LOO 1-NN accuracy
greater than 90%. In a descending order of composition
complexity, we find Ionosphere data set. Afterwards, we can
identify a group of three data sets —Pima, WPBC and Glass—
that are composed of approximately 50% safe examples and
about 40% borderline ones. The LOO 1-NN accuracy for
these data sets is about 70%. Finally, the most heterogeneous

and challenging data sets are Liver and Gastro, which are
dominated by borderline examples and account for the lowest
LOO 1-NN accuracies among the considered data sets. These
variety of data sets allows us to perform a comprehensive study
under several data complexity scenarios.

B. Typification as instance selection method for 1-NN

The neighborhood-based typology of feature vectors can be
used, in a straightforward way, as an instance selection method
for the 1-NN classifier. Consider, for example, that we keep
safe feature vectors from the training set and remove all the
others from it. Hereafter we call the 1-NN rule, preceded by
this instance selection method, as safeNN. In Table II(a) we
compare the accuracies of 1-NN vs. safeNN.

It is interesting to note that for two of the easiest data
sets —Iris and Wine— as well as for the most complicated
ones (Liver and Gastro), accuracy differences are minimal (this
meaning that, by removing non safe points, we observe neither
improvements nor deteriorations of the classification perfor-
mance). For the other data sets, results are either in favor of
1-NN (Hepatitis, Ionosphere and Glass) or in favor of safeNN
(Pima, WDBC and WPBC). The most significant performance
differences are observed for the two most heterogeneous data
sets —WPBC and Glass— since, in their cases, the selection
of safe examples reduces the training sets in about a half of
its original cardinality. This is somehow expected; however,
the fact to be highlighted is that the largest improvement is
observed for an heterogeneous, 32-dimension two-class data
set (WPBC) while the largest performance deterioration occurs
for an heterogeneous, 9-dimensional six-class data set (Glass).

According to these results, it is not certain whether remov-
ing the non-safe examples rather leads to an improved or at
least not worsened version of 1-NN.

C. Analysis of the types of the feature line segments

In this section we report the characterization of the fea-
ture line segments which are more relevant for the RNFLS
classifier. To do that, we first performed a classification,
following our proposed line of characterization, of the feature
line segments before as well as after applying the rectification
process, to see which is the most common type of lines kept
after the rectification. Such analysis is shown in Fig. 4.

Notice that, for all the data sets except Liver (and Gastro,
whose figure is not shown due to space constraints), the most
preserved category after the rectification process is represented
by the s2s lines. Other combinations for safe examples —
namely s2b, s2r and s2o— consistently exhibit the opposite
behavior: more segments are removed than selected. The only
exception for this occurs for Ionosphere, for wich about a
half of s2b and s2r feature line segments are either selected
or removed, respectively. In contrast, most of the b2b fea-
ture line segments are removed by the rectification process,
except in the case of Ionosphere, for which 60% of them,
as well as the same proportion of b2r ones, are maintained.
That is a curious fact since Ionosphere is not dominated by
these type of examples; in fact, it contains only a 11.4% of
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TABLE I: Description of the data sets and their corresponding LOO 1-NN accuracies and composition per type.

[Safe, Borderline, Rare, Outlier]
Dataset #Vectors #Feat. #Classes LOO 1-NN acc. Vectors per type Percent (%) per type
Hepatitis 80 19 2 92.50% [71, 7, 0, 2] [88.75, 8.75, 0.0, 2.5]
Iris 150 4 3 94.67% [137, 11, 0, 2] [91.33, 7.33, 0.0, 1.33]
Pima 768 8 2 70.57% [429, 282, 26, 31] [55.86, 36.72, 3.39, 4.04]
Wine 178 13 3 95.51% [163, 13, 0, 2] [91.57, 7.3, 0.0, 1.12]
Liver 345 6 2 63.19% [112, 224, 5, 4] [32.46, 64.93, 1.45, 1.16]
Ionosphere 351 34 2 86.32% [275, 40, 19, 17] [78.35, 11.4, 5.41, 4.84]
WDBC 569 30 2 95.08% [537, 25, 3, 4] [94.38, 4.39, 0.53, 0.7]
WPBC 194 32 2 73.20% [93, 82, 7, 12] [47.94, 42.27, 3.61, 6.19]
Glass 214 9 6 70.09% [103, 81, 13, 17] [48.13, 37.85, 6.07, 7.94]
Gastro 76 698 3 59.21% [19, 54, 0, 3] [25.0, 71.05, 0.0, 3.95]

TABLE II: Classification accuracies, and their corresponding standard errors, estimated for 20 repetitions of 50-50 random
training-test for: (a) 1-NN vs. safeNN, (b) RNFLS vs. safeRNFLS, (c) NFL vs. safeNFL.

(a) 1-NN vs. safeNN (b) RNFLS vs. safeRNFLS (c) NFL vs. safeNFL
Dataset 1-NN safeNN RNFLS safeRNFLS NFL safeNFL
Hepatitis 92.25±0.95 87.75±1.16 91.50±0.99 91.38±0.99 93.62±0.86 93.00±0.90
Iris 93.40±0.64 93.67±0.63 94.87±0.57 94.80±0.57 87.07±0.87 87.47±0.85
Pima 70.29±0.52 72.93±0.51 74.14±0.50 74.44±0.50 68.05±0.53 68.31±0.53
Wine 94.33±0.55 94.27±0.55 95.45±0.49 95.34±0.50 95.73±0.48 95.62±0.49
Liver 59.83±0.83 58.32±0.84 63.67±0.82 62.86±0.82 61.16±0.83 61.04±0.83
Ionosphere 84.49±0.61 77.50±0.70 90.43±0.50 89.38±0.52 83.89±0.62 83.38±0.63
WDBC 94.88±0.29 95.61±0.27 96.47±0.24 96.53±0.24 94.77±0.29 94.88±0.29
WPBC 65.46±1.08 75.36±0.98 72.99±1.01 74.33±0.99 72.16±1.02 71.75±1.02
Glass 66.40±1.02 58.41±1.07 68.36±1.01 67.10±1.02 62.90±1.04 60.28±1.06
Gastro 52.11±1.81 49.08±1.81 55.66±1.8 45.53±1.81 58.55±1.79 51.97±1.81

borderline feature vectors, cf. Table I. The other combination
with borderline examples (b2o) are mostly removed but in a
more conservative way for Ionosphere: 67% of the feature line
segments of this type. Notice also that Iris, Hepatitis and Wine
have a minimal number of rare examples in our 50%-50% train
and test protocol (or none when considering the entire design
set, cf. Table I) and, consequently, all feature line segments
involving them are either absent or not significant in compari-
son with the other types. For other data sets, however, r2r and
r2o feature line segments are not consistently removed; see for
instance the case of r2r feature line segments for Ionosphere
and WDBC. Regarding the o2o feature line segments, most
of them are kept after rectification for Hepatitis, Iris, Wine,
Glass and WDBC while, in contrast, they are mostly removed
for the other data sets. Such a remotion is of about a half of
them (53%) for Liver.

Summarizing, from these experiments it seems evident that
the most important feature lines for the rectification procedure
(i.e. those which are kept after rectification) are composed by
safe points, thus confirming our intuition and proposal.

A complementary analysis which can be done is to investi-
gate the type of the feature line segments that are responsible
for the classification, i.e. the feature line segments which
assign the class label to the test feature vectors. For the same
train and test experiment with 20 repetitions, we inspected
all these lines, characterizing them to the type of the feature
line segments; see Fig. 5. From there we can see that, for all
the considered data sets except for Liver (and Gastro, whose
figure is not shown due to space constraints), most of the class
labels are assigned by s2s feature line segments. This is of
course more evident for the four most homogeneous data sets,

namely: Hepatitis, Iris, Wine and WDBC. Again, the group
of similar data sets composed by Pima, WPBC and Glass
present a comparable distributions of class assignments per
type. A particular mention is due to Ionosphere, whose class
labels are mainly assigned by s2s segments in spite that the
rectification process is not particularly strong in the remotion
of non-safe examples (cf. Fig. 4(f)), probably because this data
set has many dimensions where feature lines are less likely to
cross each other. Liver, whose composition is dominated by
borderline examples, is the only one that exhibits large bars in
the number of class assignments for s2b and b2b feature line
segments.

The above-discussed analyses confirm and motivate our
proposal, i.e. that the removal of all non-safe examples, prior
the building of the feature line segments, would allow us
to avoid computations without significantly deteriorating the
classification performance of the original RNFLS. In the
subsequent section we quantify both issues: (i) the percentage
of saved computations in terms of the ratio between s2s feature
line segments and the total number of them and (ii) the
classification accuracies of RNFLS and safeRNFLS and the
comparisons between them.

D. Performances of the safeRNFLS classifier

We investigate the first issue (saved computations) by mea-
suring the percentage of s2s feature line segments with respect
to the total amount of them. Knowing this proportion gives us
an idea of the scale of saved computations if only s2s feature
line segments are taken into account. These percentages are
reported in Table III. Notice that the saving of computations
after rectification ranges from 2.25% for Hepatitis up to
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Fig. 4: Percentage of feature line segments per type that, after the rectification process, were either selected or removed.

TABLE III: Percentage of saved computations before and after
rectification.

Before rectification After rectification
Dataset s2s/Total Saving s2s/Total Saving
Hepatitis 10836/11918 9.08% 6979/7140 2.25%
Iris 15517/19643 21.00% 13604/14895 8.67%
Pima 288981/808094 64.24% 194865/293991 33.72%
Wine 22536/28472 20.85% 16004/16819 4.85%
Liver 16359/153369 89.33% 7360/26679 72.41%
Ionosphere 129289/168564 23.30% 74332/92985 20.06%
WDBC 372720/431193 13.56% 314294/331124 5.08%
WPBC 23761/60812 60.93% 12525/21417 41.52%
Glass 8078/31652 74.48% 5187/10500 50.60%
Gastro 300/5040 94.05% 300/1780 83.15%

83.15% for Gastro. Pima —the largest data set— gets a saving
percentage of 33.72% that, even though is not the largest
percentage, it does correspond to one of the largest absolute

savings of computation time. Even the modest percentage of
saving for WDBC is significant, considering that it is the
second largest data set.

The second aspect (classification accuracies of the safeR-
NFLS) has been examined by performing a classification
test, using exactly the same partitions for 20 repetitions, and
comparing the results per data set. Classification accuracies
are shown in Table II(b). Notice that there are no highlighted
results except for WPBC and Gastro; that means, for most of
the considered data sets, our proposal is in practice equally ac-
curate to the original RNFLS classifier. In the particular case of
WPBC, safeRNFLS is in fact significantly better than RNFLS.
In contrast, for Gastro, safeRNFLS is significantly worse than
RNFLS; this meaning that our proposal is not recommended
for very complicated data sets (i.e. few safe examples) lying
in very sparse high-dimensional feature spaces.
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Fig. 5: Number of class label assignments according to the type of feature line segments

E. Performance of the safeNFL classifier

As a last experiment, we reported an analysis aimed at
studying the effect of removing all non-safe examples before
using the original NFL classifier. As explained in Sec. II-A,
NFL suffers from two drawbacks that limit its applicability;
however, our aim in this last experiment is confirming whether
NFL still does almost the same job when building feature lines
only between safe points than when using all the available
examples. The comparison is shown in Table II(c).

We can see that the performance deterioration for safeNFL
against NFL is only significant for Glass and Gastro. For all
the remaining data sets, NFL and safeNFL are equivalent but
the amount of avoided computations is remarkable in all cases,
cf. columns under the “Before rectification” heading in Table
III.

F. Comparison of execution times

The reduction in computational burden —that was reported
in Table III as the proportion of feature line segments that
are removed from consideration— does not necessarily trans-
late into the number of processor operations or time saved.
Therefore, we measured actual timing results when evaluating
a test partition in each data set, for 1-NN, RNFLS, NFL
and their corresponding “safe” variants; see Table IV. All the
experiments were performed on a HP laptop with the following
specifications: AMD A9-9420 processor, 3GHz, 8GB RAM
and Windows 10. The time.perf_counter() function
from Python 3.4.1 was used to measure the elapsed times.
There were no other applications running on the machine
during the experiment.

It can be noticed that the percentages of saved computation
time cover a wide range depending on the amount of retained
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TABLE IV: Timing results in seconds, and their corresponding percentage of saved computation time, for the evaluation of a
test set: (a) 1-NN vs. safeNN, (b) RNFLS vs. safeRNFLS, (c) NFL vs. safeNFL.

(a) 1-NN vs. safeNN (b) RNFLS vs. safeRNFLS (c) NFL vs. safeNFL
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) RNFLS vs. safeRNFLSDataset 1-NN safeNN Saving RNFLS safeRNFLS Saving NFL safeNFL Saving

Hepatitis 0.03 0.02 7.27% 0.44 0.40 8.53% 0.49 0.46 6.78%
Iris 0.14 0.10 26.20% 1.56 1.38 11.56% 1.41 1.26 10.56%
Pima 2.03 0.91 55.11% 127.74 96.19 24.70% 334.62 134.60 59.78%
Wine 0.11 0.08 21.17% 1.74 1.69 2.90% 2.59 2.08 19.85%
Liver 0.34 0.11 69.49% 4.71 1.72 63.54% 28.85 2.82 90.22%
Ionosphere 0.35 0.27 21.35% 17.62 14.77 16.12% 33.67 27.08 19.59%
WDBC 0.91 0.87 4.21% 101.81 98.03 3.71% 135.29 117.02 13.51%
WPBC 0.11 0.06 45.63% 2.64 1.78 32.54% 6.24 1.21 80.53%
Glass 0.13 0.05 61.60% 1.08 0.42 61.12% 3.55 0.88 75.31%
Gastro 0.02 0.005 78.90% 0.06 0.01 81.14% 0.34 0.004 98.89%

safe objects. In spite of the individual differences that we
observe between the percentages reported in Tables III and
Table IV, the relation between the corresponding ones is
almost linear, as shown in the scatter plot on the right of Table
IV for the case of RNFLS vs. safeRNFLS. Notice also in the
figure that, in only three cases (Hepatitis, Iris and Glass), the
percentage of saved computation time is slightly larger than
the percentage of saved computations. This behavior can be
explained by the fact that these data sets —excluding Gastro,
which is very high-dimensional in contrast with them— are
those with the lower number of of feature line segments after
rectification, cf. Table III.

V. CONCLUSION

The RNFLS classifier effectively improves over NFL by
solving two important drawbacks of the latter. The cardinality
of the set of feature line segments after rectification is,
however, still large and time consuming for both training and
test phases. In this paper, we proposed a novel variant of
RNFLS, called here safeRNFLS, that only considers feature
line segments connecting safe points, according to an adopted
neighborhood-based definition of safeness. We have experi-
mentally showed that safe-to-safe feature line segments are
typically the ones providing the class label assignments for
the RNFLS classifier and, therefore, the important ones to be
built while avoiding the construction of the other ones. We
provided empirical evidence confirming that safeRNFLS is
not, in general, significantly different from RNFLS but cheaper
to be trained and used once deployed. We also observed that
our proposal is not recommended in cases of complicated
compositions along with very sparse representations (few
examples in very high-dimensional feature spaces). Future
work may include the consideration of scores for the degree
of safeness, such that a greater control on the size of the set
of the feature line segments is obtained.
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